文氏图,一竖一斜杠在数学中代表什么
文氏图,一竖一斜杠在数学中代表什么?
斜杠一般的意义是表示除法,用来进行整除运算;反斜杠意义是一种集合运算符号,集合U和A的相对差集。
斜杠在数学上表示分数或者除,例如:1/2,表示二分之一。反斜杠的符号为U \ A,是在集合U中,但不在集合A中的所有元素,相对差集{1,2,3} \ {2,3,4}为{1}。
而相对差集{2,3,4} \ {1,2,3}为{4}。当集合A是集合U的子集时,相对差集U \ A也称为集合A在集合U中的补集。若是研究文氏图,集合U为全集时,且可以借由上下文找到全集定义时,会使用A来代替U \ A
斜杠怎么表示分数?
斜杠表示分数,或者除,例如1/2,表示二分之一。
反斜杠"\"是一种集合运算符号,集合U和A的相对差集,符号为U \ A,是在集合U中,但不在集合A中的所有元素,相对差集{1,2,3} \ {2,3,4} 为{1} ,而相对差集{2,3,4} \ {1,2,3} 为{4} 。
当集合A是集合U的子集时,相对差集U \ A也称为集合A在集合U中的补集。若是研究文氏图,集合U为全集时,且可以借由上下文找到全集定义时,会使用A来代替U \ A。
什么是三段论推理?
三段论虽然作为近年来河源公务员行测判断推理不常考的题型,但是在考题出来后还是让许多学生感觉非常棘手,不仅浪费时间,还很难做对。究其原因一是题型比较复杂,二是涉及到一些相关推论大家不是很了解。那么今天中公教育就为大家介绍两个三段论中的推论,帮助大家快速解决三段论的题目。
在了解推论之前,我们先了解两个和三段论有点关系的定义:
定义一:被“所有非”连接的两个概念可以互换位置。即:所有A非B等价于所有B非A。
定义二:被“有些是”连接的连个概念可以互换位置。即:有些A是B等价于有些B是A。
至于对这两个定义得出感兴趣的小伙伴可以通过文氏图来论证,这里就不做过的赘述。接下来就是基于这两个定义的推论。
推论一:所有A是B等价于所有非B非A。
解释:所有A是B可以转换为所有A非非B,然后再根据定义一互换A和非B的位置就可以得出这个推论。
推论二:有些A非B等价于有些非B是A。
解释:有些A非B可以转化为有些A是非B,然后再根据定义二互换A和非B的位置,就可以得出这个推论。
在了解了这两个推论后,我们就可以去做一些在三段论当中比较难搞的题目了。
例题:在本届运动会上,所有参加自由泳比赛的语和动员都参加了蛙泳比赛,再加入以下哪项陈述,可以推出“有些参加蝶泳比赛的运动员没有参加自由泳的比赛”?
A.所有参加蝶泳比赛的运动员也参加了蛙泳比赛
B.有些参加蛙泳比赛的运动员参加了蝶泳比赛
C.有些内有参加蛙泳比赛的运动员参加了蝶泳比赛
D.有些没有参加蝶泳比赛的运动员也没有参加蛙泳比赛
【中公解析】C 根据题干可知这是已知部分前提和已知结论的前提型三段论。我们设A是参加蝶泳,B是参加蛙泳,C是参加自由泳可知,结论的形式为有些A非C,根据三段论的标准形式可知,我们需要有一个所有B非C的前提,但是,题干给的前提形式是所有C是B,这时,我们可以利用推论一将其转化为所有非B非C,这样就满足一般形式了,此时,我们可以知道,另外一个前提的形式就是有些A是非B。还原内容可以知道所要补充的前提为有些参加蝶泳的是没有参加蛙泳的,再根据定义一,可以转化为有些没有参加蛙泳的运动员是参加了蝶泳的,即C选项正确。
【补充】三段论的四种标准形式:、
1.所有A是B+所有B是C—>所有A是C
2.所有A是B+所有B非C—>所有A非C
3.有些A是B+所有B是C—>有些A是C
4.有些A是B+所有B非C—>有些A非C
河源中公教育:2020广东省公务员考试时间安排尚未发布。2020广东省考期间,河源中公教育为大家整理2020广东省考重要时间节点,以免考生错失了重要信息。请按【Ctrl+D】收藏本页面,省考开始后随时查看。更多广东公务员考试信息,请随时关注河源中公教育。
这种作业难度是否合理?
即使排除课外数学,我觉得也是正常的。大部分作业是检查课内知识掌握情况,但大纲本身就有一些数学广角等拓展内容知识,也不排除一些练习测试卷会有拓展题。即使家长有一定文化程度,有些题型也不一定能正确解出并辅导好。这也是当初我做问答的初衷,帮助粉丝家长科学辅导。我是王老师,致力于小学数学的精品问答!通过一些挑战性的拓展题目,目的是有个载体导入不同数学思想方法的运用,比如分类分步的思想、类比思想、归纳的思想、最优化的思想等等。从另一方面讲,也满足不同学生的学习需求。
人教版数学广角今天总结下人教版小学数学广角部分内容,供您参考,启智为主要目的。
① 搭配-简单的排列组合
通过日常搭配导入排列组合的思想方法,通过分析,观察,推理等教会孩子有序全面去思考,感受数学与生活的密不可分。
② 集合-文氏图
通过一些实际重叠问题情景导入,让学生去感知集合的基本概念,并通过画图去分析思考并最终解决问题。实际上是一种解题策略的扩充。
③ 最优化思想-统筹,策略
生活中的很多事情,怎么合理安排才能最优化呢?从熟悉的烧水,烙饼等生活场景导入,让孩子去体会优化的思想,这也是数学思想应用的实际意义体现。
结语我们家长一方面喊着要注重孩子数学思维培养,一方面又质疑题目难度设置,数学思想的启蒙才是真正让孩子拿起数学这个工具去看问题,去解决问题。以上!
欢迎关注王老师头条号及悟空问答
学习更多好玩有趣的数学干货知识
比较图常用于展示或总结两个或多个主题的相同点与不同点?
B鱼骨图
应该是B,因为对比矩阵不符合题意,c和d 也不对。
还没有评论,来说两句吧...